

LABORATORIO Nº3

Aguas – Solubilidad – Sistemas Coloidales – Reacciones de Doble Desplazamiento

> QUÍMICA - 63.01/83.01 1º 2020

TRABAJO PRÁCTICO Nº6.

DETERMINACIÓN DE UNA MASA INCÓGNITA DE CLORATO DE POTASIO A TRAVÉS DE SU SOLUBILIDAD.

Soluciones

- Solución (Sc): Sistema homogéneo. Formado por soluto/s (st) y solvente (sv).
- Expresiones de concentración: cantidad de soluto en una dada cantidad de solvente o solución. Ejemplos:
 - Molaridad: moles de st/1000ml de Sc.
 - % en masa: masa de st/100g de Sc.
 - Normalidad: eq de st/1000ml de Sc.
 - Fracción Molar (χ): moles de st/(moles totales).

Solubilidad

 Solubilidad: se define como la mayor cantidad de soluto que puede disolverse en una determinada cantidad de solvente, a una presión y temperatura dadas.

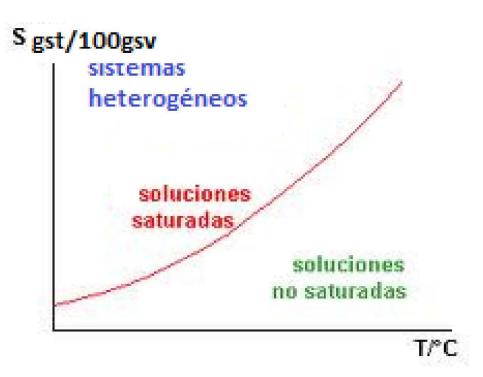
g de st/100g de sv

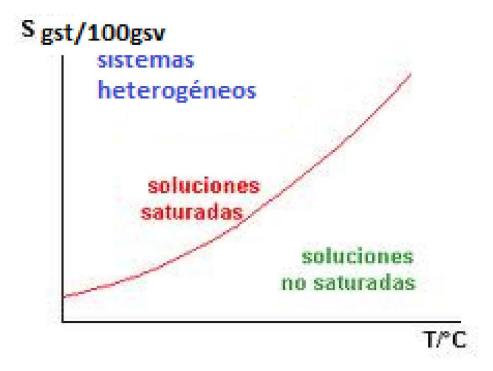
- La solubilidad se ve afectada por la variación de la temperatura.
- Solución Saturada: la cantidad de soluto disuelto corresponde al valor de solubilidad.

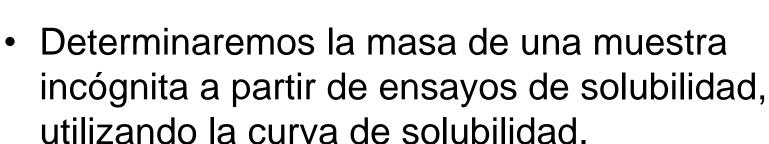
 Por Le Chatelier, un aumento de la temperatura favorecerá la solubilidad si el proceso de disolución es endotérmico y lo dificultará si es exotérmico.

 Para los sólidos iónicos, ∆Hdisol > 0, por lo que el aumento de la temperatura favorece su disolución en agua.

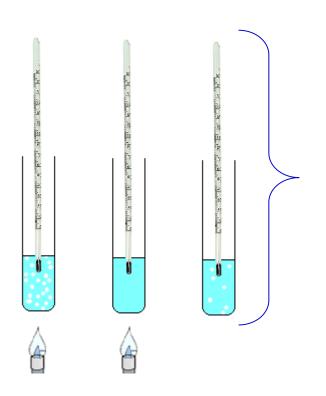
El cambio de la solubilidad en función de la temperatura, rara vez es lineal.


Las curvas de solubilidad, en función de la temperatura, se construyen experimentalmente.


En el siguiente video vamos a ver la experiencia a realizar para poder construir la curva de solubilidad de un compuesto. Particularmente, lo haremos con el KClO₃, ya que luego utilizaremos esta curva para otras determinaciones.


https://www.youtube.com/watch?v=Whdx9rS SLxg

- Curva de solubilidad: concentración de la solución saturada (en presencia de sólido sin disolver) a diferentes temperaturas.
- Cada punto en la curva representa un sistema en equilibrio.



Agregamos 5ml de H₂O al tubo con la Mtra

Calentamos hasta disolver

Enfriamos hasta 1^{ros} cristales (TA1)

Repetimos (TA2)

$$V_A=5mI$$

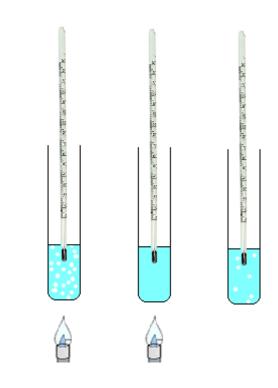
$$T_A = (T_{A1} + T_{A2})/2$$

Agregamos 5ml de H₂O al mismo tubo anterior

Calentamos hasta disolver

Enfriamos hasta 1^{ros} cristales (TB1)

Repetimos (TB2)


 $V_B = 10mI$

T_{B1}

T_{b2}

 $T_b = (T_{B1} + T_{B2})/2$

gKClO₃/100mlH₂O SB Temp(°C) T_{B}

 ¡OJO! s_A y s_B son valores de masa de KClO₃ en 100ml de H₂O.

$$(M_A + M_B)/2 = M$$

Masa de la muestra KCIO₃

Para trabajar con los temas aprendidos, los docentes les darán indicaciones para realizar diferentes actividades.

